
1455

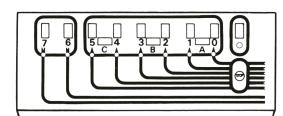
Technic

Programmable Systems

Classroom materials

CONTROL		DELETE	INSERT LINE	0	_	2	ω	4	ر ال	6	7	Lines © 1986 LEGO Group
	P. H. Land	SAVE	LOAD	PRINT	WIPE	END	MAIN/BOXED DISPLAY	DISK DIRECTORY	∢ SHIFT f CTRL f ∀	ANY VALUE	ANY VALUE	LEGO)
	,	CTRL f9	CTRL f8	CTRL f7	CTRL f6	CTRL fs	CTRL f4	CTRL f3		SHIFT fi	SHIFT fo	
CONTROL		DELETE	INSERT LINE	0	1	2	w	4	5	6	7	Lines © 1986 LEGO Group
	P. HILLIAM	SAVE	LOAD	PRINT	WIPE	END	MAIN/BOXED DISPLAY	DISK DIRECTORY	∢ SHIFT f CTRL f ▶	ANY VALUE	ANY VALUE	AEGO)
	,	CTRL f9	CTRL f8	CTRL f7	CTRL fe	CTRL fs	CTRL f4	CTRL f3		SHIFT fi	SHIFT fo	
CONTROL		DELETE	INSERT LINE	0	1	2	သ	4	5	6	7	Lines © 1986 LEGO Group
	P. HILLIAM	SAVE	LOAD	PRINT	WIPE	END	MAIN/BOXED DISPLAY	DISK DIRECTORY	 SHIFT f CTRL f ▶	ANY VALUE	ANY VALUE	AGGO
	,	CTRL f9	CTRL f8	CTRL f7	CTRL f6	CTRL f5	CTRL f4	CTRL f3		SHIFT ft	OHIFT 10	
CONTROL		DELETE	INSERT LINE	0	1	2	3	4	5	6	7	Lines © 1986 LEGO Group
	Child The	SAVE	LOAD	PRINT	WIPE	END	MAIN/BOXED DISPLAY	DISK DIRECTORY	▲ SHIFT f CTRL f ▶	ANY VALUE	AN) VALJE	AEGO)
	,	CTRL f9	CTRL f8	CTRL f7	CTRL f6	CTRL f5	CTRL f4	CTRL f3		SHIFT ft	SHIFT to	

-BBC 'B' MICROCOMPUTER -


Manual controller keystrip

			b		a ⊚ 1986 LEGO Group
5	4	3	2	1	0
	2		b		a © 1986 LEGO Group
5	4	3	2	1	0
	C		b		a © 1986 LEGO Group
5	4	3	2	1	0
	C		b		a ⊚ 1986 LEGO Group
5	4	3	2	1	0
	C		b		a © 1986 LEGO Group
5	4	3	2	1	0
	C		b		a © 1986 LEGO Group
5	4	3	2	1	0
	C		b		a © 1986 LEGO Group
5	4	3	2	1	0

Program sheet

I	N			OL	JΤ			
7	6	5	4	3	2	1	o	
_								

© This material copyright LEGO Group, 1986. ®LEGO is a registered trade mark belonging to LEGO Group. This material may be freely photocopied for use in the purchasing institution only.

Assessment

Analysis

Stating the problem accurately Exploring the problem Developing deeper understanding Developing criteria

Finding and developing the best solution

Evaluating each solution Choosing the best solution Modelling the best solutions

Communication

Discussion with others Listening to other's ideas Drawing sketches and diagrams Writing a report Giving a talk

Finding and developing ideas

Discussion with others Looking and thinking up ideas Investigating ideas Finding several solutions

Evaluation

Using the criteria to carry out tests Analysing the tests' results Making modifications when necessary

Teamwork

Contributing ideas Sharing work equally Working cooperatively

Assignment	Notes
Assignment	Notes
	·
Assignment	Notes
Assignment	Notes
Assignment	Notes

© This material copyright LEGO Group, 1986. ®LEGO is a registe

Assignment: 0

Introduction to the materials

A0a

-You will need-

Resources booklet Program sheet Assessment sheet You are going to-

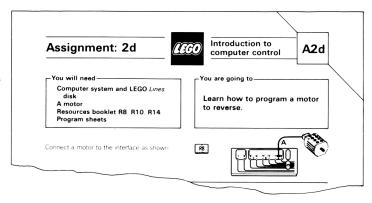
Learn how to use the materials

Using the materials you are going to learn about three different ways to control devices:

- human control
- mechanical control
- electronic control

To do this, you will be given Assignment cards, like this one. This assignment, Assignment 0, comes in three parts, A0a, A0b and A0c.

To help you in all the assignments, there are the Resources booklet, the Program sheet and the Assessment sheet. Make sure you have these in front of you for Assignment 0.


Assignment cards

The Assignment cards, like this one, are designed to be as easy to use as possible. On the top right-hand corner of each one you will find a reference number, A0a on this one (that is Assignment 0, part a). Underneath this you will find a statement of what you are going to do in the assignment.

The box on the top left-hand side of the card outlines what you will need in order to do the assignment. You should make sure you have these before you start.

The rest of the card tells you what to do. Drawings and sample programs take you through the activity. Where extra help is available in the Resources booklet, you are shown where to find it by the figure in the middle column like this:

R8

Program sheet

Use resources page R11 to discover what you will be writing in each of the columns.

VIVO

Assignment: 0

A0a

You will need-

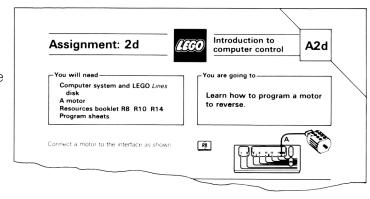
Resources booklet Program sheet Assessment sheet You are going to

Learn how to use the materials

Using the materials you are going to learn about three different ways to control devices:

- human control
- mechanical control
- electronic control

To do this, you will be given Assignment cards, like this one. This assignment, Assignment 0, comes in three parts, A0a, A0b and A0c.


To help you in all the assignments, there are the Resources booklet, the Program sheet and the Assessment sheet. Make sure you have these in front of you for Assignment 0.

Assignment cards

The Assignment cards, like this one, are designed to be as easy to use as possible. On the top right-hand corner of each one you will find a reference number, A0a on this one (that is Assignment 0, part a). Underneath this you will find a statement of what you are going to do in the assignment.

The box on the top left-hand side of the card outlines what you will need in order to do the assignment. You should make sure you have these before you start.

The rest of the card tells you what to do. Drawings and sample programs take you through the activity. Where extra help is available in the Resources booklet, you are shown where to find it by the figure in the middle column like this:

Program sheet

Use resources page R11 to discover what you will be writing in each of the columns.

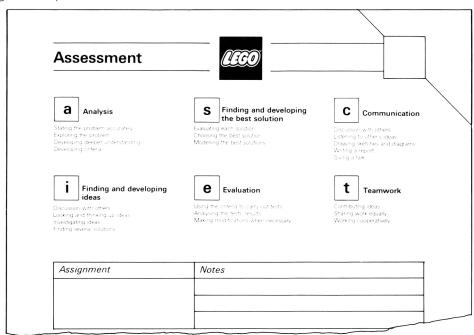
Introduction to the materials

A₀c

You will need -

Assessment sheet Resources booklet

You are going to-


Learn how to use the Assessment sheet

Assessment sheet

This is to help you measure the success of what you are doing and of what you have learnt. At the top there are headings for you to use to describe how you have got on, next to boxes containing letters (these letters also appear on the bottom of every Assignment sheet). Help is available on these headings on the following Resources booklet pages:

- 1 What does i stand for?
- 2 Where would you look to find out more about what **a** i **s** e **c** and **t** stand for?
- 3 What are Criteria?
- 4 If you were asked how well you thought your group worked as a team, what questions would you ask yourself?
- 5 **C** has five elements in it. Which do you think will be the most difficult for you to achieve?
- 6 Do you think you will use all the items on the Assessment sheet in every single assignment you do?
- 7 Are there any terms you can't find out about on the Assessment sheet?
- 8 Fill in an Assessment sheet for Assignment 0, describing what you think you have learnt from answering these questions.

Introduction to programmable systems

A₁a

You will need-

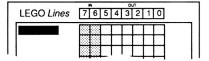
Computer system with disk drive LEGO *Lines* disk 1 motor model and light brick Resource booklet

Connect computer system and insert disk.

Collect model and connect it to the interface as directed in the Resources booklet.

You are going to-

Use a computer program to control a model system.



Loading LEGO Lines

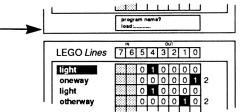
Press SHIFT BREAK to autoboot LEGO Lines

Loading a program

use in the purchasing institution only

freely photocopied for

may be


mark belonging to LEGO Group.

®LEGO is a registered trade

Press CTRL f₈ to load program — this message should appear

Type MLA and then press RETURN to load program MLA.

This program is designed to turn a light on, rotate a motor one way for two seconds, turn the light on again and rotate the motor the other way for another two seconds.

Running the program

Press TAB to run the program — check that the system performs correctly. If not

RÍO

and then

Changing the program

Alter the time of rotation

Press **DELETE** to remove the time on this line:

Oneway ■ ■ ØØØØØ1

Enter a number between 1.0 and 3.5. Check to see it is entered correctly.

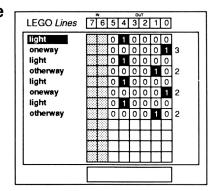
Press TAB to run the program. Then copy the program onto a Program sheet and describe what it does.

Enter more instructions to repeat the sequence

Press

↓ until the cursor block reaches the first blank line.

Copy the original instructions


Use: Letter keys for labels
Red keys for output values
Numbers for timing or counting
RETURN to go to the next line.

e

Press TAB to run program and then produce a printout of this 'new' program and describe what it does.

a

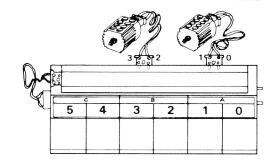
A₁b

You will need-

Manual controller and keystrip Two-motor model (1090 D or 1090 E) Resources booklet R6, R8 Program sheets

Connect a two-motor model to the manual controller as shown in the Resources booklet.

Press each key on the controller reasonably hard in turn.


Note what happens to the model.

A summary of your actions is given below:

-You are going to-

Control a model using the manual controller.

R8

The 1 means that key 1 is pressed or on —

	5	4	3	2	1	Ø
Key O	Ø	Ø	Ø	Ø	Ø	1
Key 1	Ø	Ø	Ø	Ø	1	Ø
Key 2						
Key 3						
Key 4						
Key 5						

Draw this table and complete it.

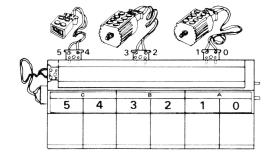
Try pressing keys 1 and 3 at the same time:

What happens to the model?

vvnat	nappens	OJ	tne	model?	
Why?					

e: 	5	4	3	2	1	Ø
Key 1 and Key 3	Ø	Ø	1	Ø	1	Ø

Check the direction the motors turn when you press keys 2 and \emptyset at the same time. If this is not the same, can you change the leads round so it is?


R8

Here is a sequence of instructions.

Instead of a key to press, we now
have a <i>label</i> (to describe what is
happening) and a time value to
tell you how long to do it.

O		5	4	3	2	1	Ø	time
	light on	Ø	1	Ø	Ø	Ø	Ø	5.0
	one way	Ø	Ø	Ø	1	Ø	1	10.0
	light on	Ø	1	Ø	Ø	Ø	Ø	5.0
	other way	Ø	Ø	1	Ø	1	Ø	10.0

Now write some programs (on the program sheet) and try them out. Describe what you intend your models to do, and whether they do it.

a

i

S

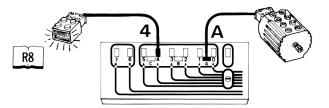
е

C

t

uging to LEGO Group.

-You will need-


Computer system and LEGO Lines

A motor and a light brick Resources booklet

Take a motor and a light brick from your model and connect them to the interface as shown.

-You are going to-

Learn how to control a motor and light brick.

A washing machine manufacturer needs a control program which will spin clothes at the end of the wash cycle for 5 seconds.

The LEGO motor represents the washing machine motor.

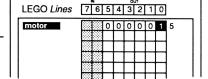
Possible solution

material may be freely photocopied for use in the purchasing institution only

This

mark belonging to LEGO Group.

®LEGO is a registered trade


Press SHIFT BREAK to load LEGO Lines.

Press CTRL fs to load program.

Type ONE press RETURN to load ONE.

Press TAB to test program and describe what this instruction does.

R10

An electric fan (represented by the LEGO motor) is required to come on for 8 seconds when a button is pressed.

Possible solution

Change time of last solution

→ to move cursor block to 'time'

Press **DELETE**

Press 8 to enter new time.

Press TAB to test program and describe what it does

look especially at the interface.

An outside light is required to come on for 8 seconds when a button is pressed.

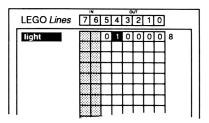
Possible solution

Press f₇ to set bit 0 off.

Press f₃ to set bit 4 on. (Look for a '1' in column 4).

DELETE label and enter another word to describe what is taking place.

a

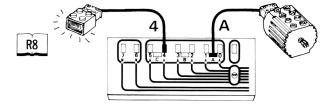

Press TAB to test program and describe what

e

C

S

A₂b


You will need-

Computer system and LEGO
Lines disk
A motor and two light bricks
Resources booklet R8, R10
Program sheets

-You are going to-

Learn how to control two or more output devices.

Use a light brick and a motor and connect them to the interface as shown.

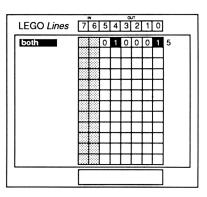
A program is required which operates a fairground ride (represented by the LEGO motor) and a light which shows that the ride is in progress for 5 seconds.

Possible solution

may be freely photocopied for use in the purchasing institution only

Connect motor to output bits A and lamp to output bits 4 on the interface.

R8


Press CTRL f₈ to load program.

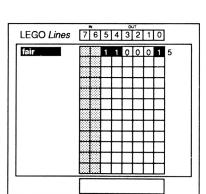
Type TWO press RETURN to load TWO.

Press TAB to test program.

Describe what happens on screen, on the interface and to the motor and light.

Improve the fairground ride to include two lights.

Possible solution


Connect another light brick to the interface.

Change the line so that both the lights and the motor are on for 5 seconds.

Press TAB to test program.

R10

Make a record of your program on the Program sheet, obtain a printout of it (by pressing CTRL f₇) and describe how it solves the problem.

a

i

S

е

C

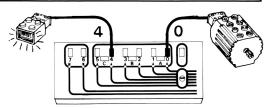
t

© This material copyright LEGO Group, 1986. ®LEGO is a registered trade mark belonging to LEGO Group.

Introduction to computer control

A₂c

You will need-


Computer system and LEGO
Lines disk
A motor and two light bricks
Resources booklet R8, R10
Program sheets

Connect the light brick and the motor to the interface as shown.

-You are going to-

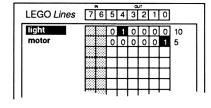
Learn how to program a sequence of instructions.

A program is needed which will turn on a light 10 seconds before a motor is started up.

Possible solution

This material may be freely photocopied for use in the purchasing institution only

Connect motor to output bit 0.


Connect lamp to output bit 4.

Press CTRL f₈ to load a program.

Type **THREE** press **RETURN** to load program THREE.

Press **TAB** to test program and describe what happens.

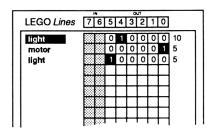
R10

Modify the solution to turn on another lamp for 5 seconds after the motor has been turned off.

Possible solution

Connect another light brick to the interface.

Modify the program by adding an extra line.


Position the cursor block at the start of this line and test it by pressing **COPY**.

Test the new program by pressing TAB.

Make a record of your program on the Program sheet, obtain a printout of it (by pressing CTRL f₇) and describe how it solves the problem.

RĺO

a

i

S

е

C

t

© This material copyright LEGO Group, 1986. ®LEGO is a registered trade mark belonging to LEGO Group.

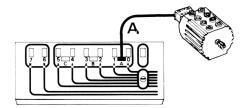
-You will need—

Computer system and LEGO Lines disk

A motor

Resources booklet R8, R10, R14 **Program sheets**

You are going to-


Learn how to program a motor to reverse.

Connect a motor to the interface as shown.

R8

RÍO

R14

A program is needed to raise a barrier, pause and then lower the barrier again.

The solution should operate when a button (TAB) is pressed. The LEGO motor represents the barrier motor.

Possible solution

use in the purchasing institution only

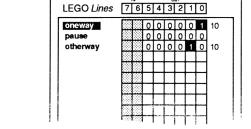
be freely photocopied for

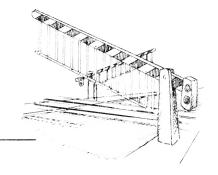
material may

mark belonging to LEGO Group.

®LEGO is a registered trade

1986.


Press CTRL f₈ to load program.


Type FOUR press RETURN to load FOUR.

Press TAB to test program.

Can you change the program so that the barriers pause for at least 15 seconds before starting again?

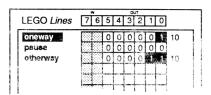
Draw a structured flow diagram giving a solution to this problem and describe your solution.

Investigation

Change the last line of the program so that the output bits 0 and 1 are both on.

Press COPY to test new line.

Explain what happens.


Can you think of any everyday situations where this feature could be of any practical use?

RÍO

R19

R20

R21

a

S

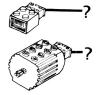
This material copyright LEGO Group,

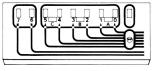
A2e

You will need-

Computer system and LEGO Lines disk

A motor and two light bricks Resources booklet R7, R8, R10, R11, R13


Program sheets


-You are going to

Learn how to program a REPEAT FOREVER loop.

Use a motor and a light brick. You will have to work out from the programs where to connect them on the interface.

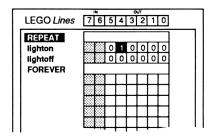
A burglar alarm system requires a light which will flash on and of until a reset button is pressed.

Possble solution

This material may be freely photocopied for use in the purchasing institution only

belonging to LEGO Group.

®LEGO is a registered trade mark


Press CTRL f₈ to load program.

Type FIVE press RETURN to load FIVE.

Connect the light brick to the correct output, once you have loaded the program.

Press TAB to test program.

RÍ0

Investigation

Press **SPACE** to halt program.

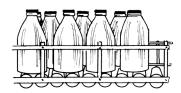
RÍO

Press **SPACE** to continue program.

Press ESCAPE to end program.

The **ESCAPE** key acts as a reset button. When you press it, the program stops and the light no longer flashes.

Copy the instructions onto a Program sheet and describe what is happening.


Design a program to control a machine which presses tops onto milk bottles as they move along a continuous conveyor belt.

What kind of device makes a conveyor move? What kind of device can press a top onto a bottle? How will the process of pressing the tops start and stop?

Use your answers to these questions to develop a solution to the problem using the LEGO materials.

Use the Program sheet to develop your solution and keep a record of your progress.

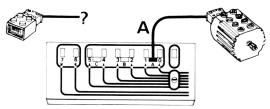
Introduction to computer control

A2f

-You will need-

Computer system and LEGO Lines disk

A motor and two light bricks Resources booklet R7, R8, R10, R11, R13


Program sheets

-You are going to-

Learn how to program a REPEAT ENDREPEAT loop to run a set of instructions a number of times.

Use a motor and a light brick. Connect the motor to the interfaces as shown. You will have to work out from the programs where to connect the light brick.

A level crossing barrier uses a flashing light to warn motorists it is closing. Design a program which will make this light flash 10 times.

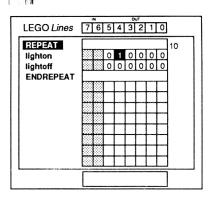
Possble solution

may be freely photocopied for use in the purchasing institution only

This material

®LEGO is a registered trade mark belonging to LEGO Group.

Press CTRL f₈ to load program.


Type SIX press RETURN to load SIX.

Connect the light brick to the correct output, once you have loaded the program.

Press TAB to test program.

Describe what happens in this program. How could the motor be included in this program?

RÌ0

A washing machine manufacturer requires a control program which will rotate the drum one way for 10 seconds and then rotate it the opposite way for 10 seconds. This sequence needs to be repeated 4 times.

Using a light brick (representing an on/off light) and a LEGO motor (representing the motor turning the drum), write a program which solves this problem.

R13

Keep a record, on a Program sheet, of how your program develops.

a

i

S

e

C

t

This material copyright LEGO Group, 1986.

Introduction to manual control

A3

You will need-

A model A manual controller Resources booklet R6, R16-21 Timing device (wristwatch)

Connect the model to the manual controller.

Make sure the connections are properly made.

Turn the motor on.

may be freely photocopied for use in the purchasing institution only

material

is a registered trade mark belonging to LEGO Group.

The model mechanism (the output shaft) turns more slowly than the motor which is driving it (the input shaft). Why should this happen?

You are going to-

Learn how mechanical gears can control how quickly a motor turns a shaft.

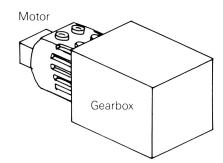
	2					
	5	4	3	2	1	0
L						

Build a gearbox like this one (you may need additional materials).

Why do the output shafts of this gearbox have different speeds to the motor?

Discover if axles which turn quickly have a greater or smaller turning force than slower axles. Try slowing them down with your finger. Which is easier to stop?

Look at the section in the Resources booklet on gearboxes and drive mechanisms.


How could you design a gearbox which will make your model move more slowly?

Use sketches and descriptions to record your ideas.

Build and test your design.

RÍ8

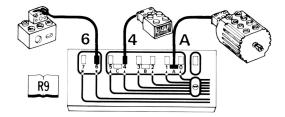
a

S

e

C

You will need-


Computer system and LEGO Lines disk

A model with a light brick, a motor, and an opto-sensor brick Resources booklet R7, R9-R12 You are going to-

Learn how to use the optosensor brick.

Connect the motor on the model to output bits A.

Connect the light brick and opto-sensor to the interface as shown.

On the interface bits 7 and 6 are input bits — that is, bits which let the computer system receive information from its environment.

Is the green indicator light for bit 6 on or off? Place your finger over the sensor slot — the indicator light will change. When you remove your finger it should return to its original state. Connect the opto-sensor to bit 7. Does it behave in the same way?

Describe what you think is happening.

Reconnect the opto-sensor to bit 6 and connect it to your model. Connect the light brick to the model so that it shines into the opto-sensor, but 3 cms away from it.

Load the program called MLB. This program is designed to wait for a signal from the opto-sensor before switching the motor on for 2 seconds.

Press TAB to run the program and use your finger to trigger the sensor.

LEGO Lines	7	6	5	4	3	υτ 2	1	0		
light REPEAT	***		0	1	0	0	0	0		
UNTIL		1	0	0	0	0	0	1	2	
otherway			0	0	0	0	1	0	2	
		**					_			
			П		Н	Н				
					П					l
L	Г					_		_		J
						_			l	

R11

Alter input sense

Pressing $\downarrow \downarrow$ will take the cursor block down to the third line. Press f_1 to alter bit 6.

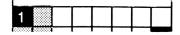
Press TAB to run the program again.

Can you explain why these two sets of instructions should behave differently?

Alter input line

Disconnect the opto-sensor from 6 and reconnect it to bit 7 on the interface.

Press $\downarrow \downarrow$ and then press SHIFT f1 to make bit 6 any value.


Press fo to alter the value of bit 7 to a 1 and press TAB.

Counting input signals

Load and run a program called COUNT.

This program waits for you to cover (and uncover) the sensor slot 10 times before continuing and turning the motor on.

Alter the program so that you only have to cover and uncover the slot 5 times before the motor is turned on.

in bit 6 means 'any value'.

The sense of bit 6 will not matter when the UNTIL looks for a signal.

This material copyright LEGO Group, 1986.

purchasing institution only

freely photocopied for use in the

may be

mark belonging to LEGO Group.

®LEGO is a registered trade

Sensing and feedback

A4b

-You will need-

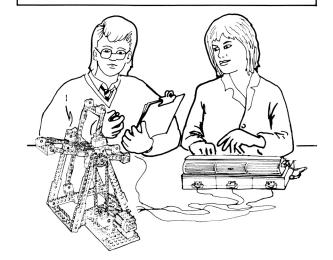
A model Manual controller Resources booklet R6, R12 You are going to-

Learn about human sensing and feedback.

Part A

may be freely photocopied for use in the purchasing institution only

This material


Decide on a task which fits your model (this should take about one minute to complete).

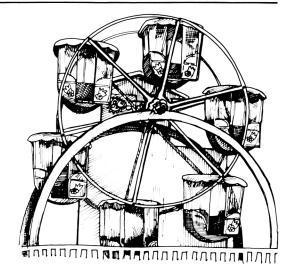
For example, use model 1090 A, the Ferris wheel.

The task is to rotate the wheel so that each seat comes to rest at the bottom in turn so passengers can get on and off.

Use the manual controller and let each member of the group have a try. Make a note of the time it takes for each person to offload all the passengers.

Using the diagram, describe what is happening when a person performs this task (use the keywords *sense*, *process* and *act* in your description).

Part B


Whatever task you chose, you should now repeat it. This time, however, the person using the manual controller should have their eyes shut, so they cannot see the model.

Another member of the group must now give instructions to the controller so the task can be performed. These might be 'Go forward', 'Back a bit' or 'Whoa!', whatever seems to work.

Again, you should make a note of the time it takes to complete the task.

How different were the times it took to complete the task?

Using the diagram, describe what happened (use the keyword *feedback* in your description). Try to explain why the tasks in part B took longer.

Action Process Sensor

a

i

s

е

C

t

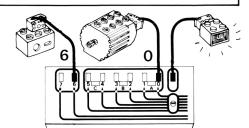
A5a

You will need -

Computer system and LEGO Lines

A motor, a light brick and an optosensor brick

Resources booklet R7-R10

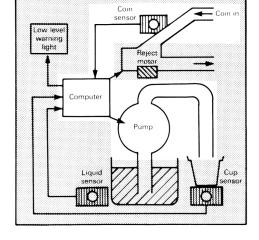

You are going to—

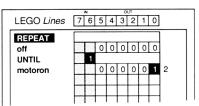
Learn how to design a program which will REPEAT a sequence of instructions UNTIL an input message is sensed.

Connect the motor, the light brick and the opto-sensor brick to the interface as shown.

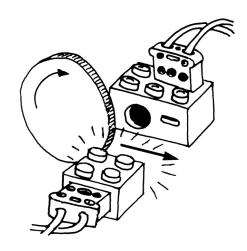
In a drinks dispensing system, a drink is to be pumped out only when a coin has been inserted. Design a program to solve this problem using the LEGO motor as the pump motor and the light brick and opto-sensor as a coin detector.

Check that the opto-sensor is connected to input bit 6.


R9



Connect a light brick to the 4 v output supply and arrange it so that when the light shines into the opto-sensor the indicator light for bit 6 is off.


Load program SEVEN.

Press TAB to test the program. Cover the sensor to simulate a coin passing.

Use a hard copy of this program and describe what would happen in an actual drinks dispenser system once a coin had been detected.

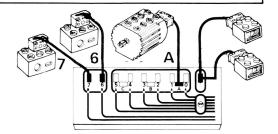
a

®LEGO is a registered trade mark belonging to LEGO Group. This material copyright LEGO Group, 1986.

This material may be freely photocopied for use in the purchasing institution only

A₅b

You will need-


Computer system and LEGO Lines disk

A motor and two opto-sensor bricks and two light bricks Resources booklet R7-R10

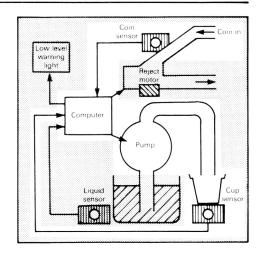
Connect the motor, the opto-sensors and the light bricks to the interface as shown.

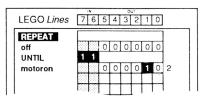
You are going to —

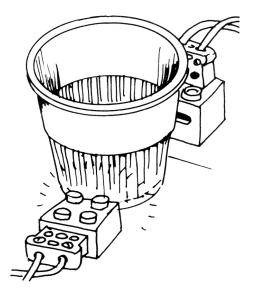
Learn how to design a program which requires two separate inputs to be sensed before an action is performed.

A program is required which will not dispense drinks until a coin is inserted and a cup is in place.

Connect the sensors to input bits 6 and 7. Make sure both indicator lights for bits 6 and 7 are off by placing your finger over the sensors as necessary, or by using the light brick as in A5a.


Connect the motor to output bits A.


Load program EIGHT.


The opto-sensors are used to sense the presence of a coin and a cup.

Press TAB to test the program.

Use a hard copy of the program and describe what would happen in an actual drinks dispenser if the program were run.

a

S

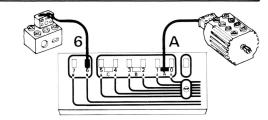
e

mark belonging to LEGO Group.

A₅c

You will need-

Computer system and LEGO Lines disk


A motor and an opto-sensor brick Resources booklet R7-R10

Connect the motor and opto-sensor to the interface as shown.

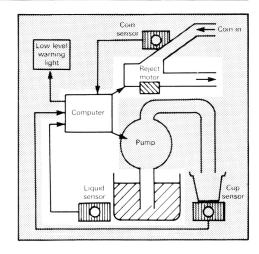
You are going to-

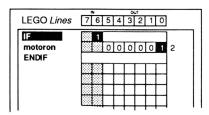
Learn how to design a program which will skip over a sequence of instructions until the right input is sensed.

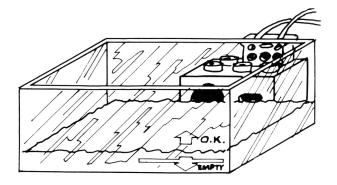
A program is required which will reject a coin if the liquid has been used up.

Condition the opto-sensor so that the indicator light on the interface is off at the start.

You could use a light brick (as before) or you could use your finger to activate the 'liquid sensor'.


The LEGO motor represents the motor which rejects the coin.


Load program NINE.


Press TAB to test the program.

Obtain a hard copy of the program and describe how it controls the motor.

Note that the motor does not come on (to reject the coin) until the sensor detects that the liquid has been used up.

This material may be freely photocopied for use in the purchasing institution only

a

S

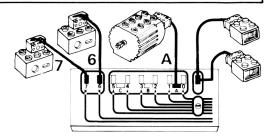
е

C

t

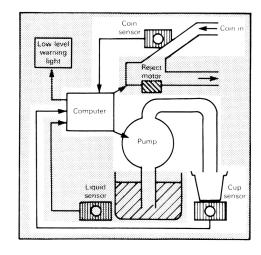
A₅d

-You will need-


Computer system and LEGO Lines disk

A motor, two light bricks and two opto-sensor bricks
Resources booklet R7-R10

Connect the light bricks, the motor and the opto-sensor bricks to the interface as shown.


You are going to-

Learn how to design a program which will execute a sequence of instructions if two inputs are sensed.

A program is required which will only turn on the pump if a coin is inserted and a cup is in place.

Condition sensors so that the indicator lights on the interface are both off.

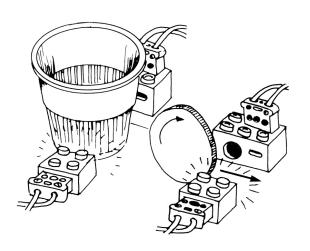
LEGO *Lines* 7 6 5 4 3 2 1 0

motoron ENDIF

Load program TEN.

Press TAB to test program.

Describe what happens.


Can you account for why the program 'appears' not to work?

Note

The motor should *not* come on.

Condition the sensors so that the motor does come on.

Describe how you did this.

use in the purchasing institution only

material may be freely photocopied for

This

a

i

S

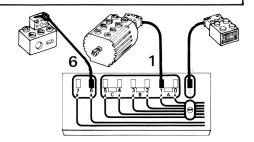
e

C

t

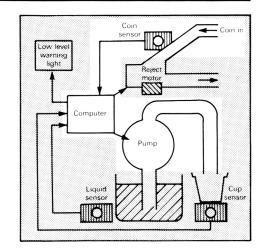
A5e

You will need-


Computer system and LEGO Lines disk

A motor, a light brick and an optosensor brick

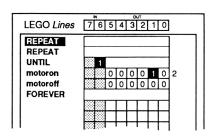
Resources booklet R7-R10

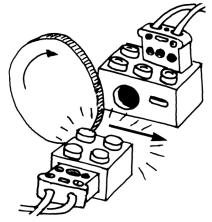

Connect the motor, light brick and optosensor brick to the interface as shown. You are going to-

Learn how to design a program which continually looks for an input and, when that input is sensed, executes a sequence of instructions.

A program is required which continually looks for a coin and dispenses a drink when the coin is inserted.

Condition the sensor so that the indicator light on the interface is off.


Load program **ELEVEN**.


Press TAB to test the program.

When you condition the sensor to be on, the program will turn the motor on, then off. You can condition the sensor to be off again to simulate waiting for a coin to be inserted.

This will be repeated until the **ESCAPE** key is pressed.

Copy this program onto a Program sheet and explain how it differs from previous examples in this assignment.

a

i

S

е

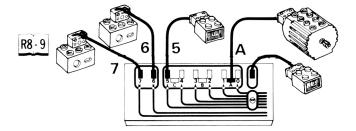
C

t

This material copyright LEGO Group, 1986.

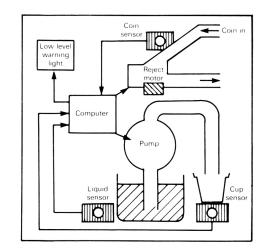
®LEGO is a registered trade mark belonging to LEGO Group.

This material may be freely photocopied for use in the purchasing institution only


You will need-

Computer system and LEGO *Lines* disk

A motor, two light bricks and two opto-sensor bricks
Resources booklet R7-R10


Connect the motor, light bricks and optosensor bricks to the interface as shown. -You are going to-

Learn how to design a program which executes a sequence of instructions when an input is sensed. As part of those instructions another input will be tested and, if it is on, the appropriate action will be performed.

A program is required which looks for a coin and dispenses a drink when the coin is inserted. The program should then check the liquid level and, if it is too low, a warning light should be lit.

Condition the opto-sensors to be off.

Load program TWELVE.

Press TAB to run the program.

ESCAPE will stop the program.

Copy this program onto a Program sheet and describe what would happen in an actual drinks dispenser if it were run.

a

i

S

e

C

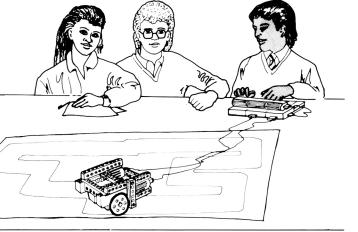
t

© This material copyright LEGO Group, 1986. ®LEGO is a registered trade

may be freely photocopied for use in the purchasing institution only

mark belonging to LEGO Group.

Manual control


A6

You will need-

LEGO 1090 Kit Manual controller Resources booklet R6, R15–21 A1 sheet of paper You are going to-

Design and make a vehicle which you can then control.

Your group is required to build a vehicle and then to write a sequence of instructions to enable it to go round a course

Building the vehicle

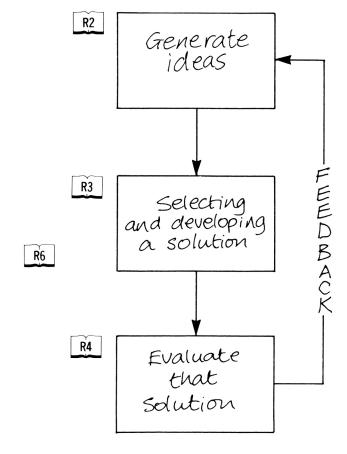
R15 shows some vehicle structures

R16 shows some drive mechanisms

R17 shows some steering mechanisms

Using these ideas, and ideas of your own, build the vehicle.

Draw a route


On the large piece of paper, draw a course for your vehicle to go round.

Test your model

Using the manual controller, test whether your vehicle is capable of going round at least part of the course. if it isn't, you will have to change your design until it can. This is the *feedback* part of the design process.

Write a program

Using a Program sheet, write a sequence of instructions which would let somebody else (from another group) make your vehicle follow the course you have drawn.

a

i

S

е

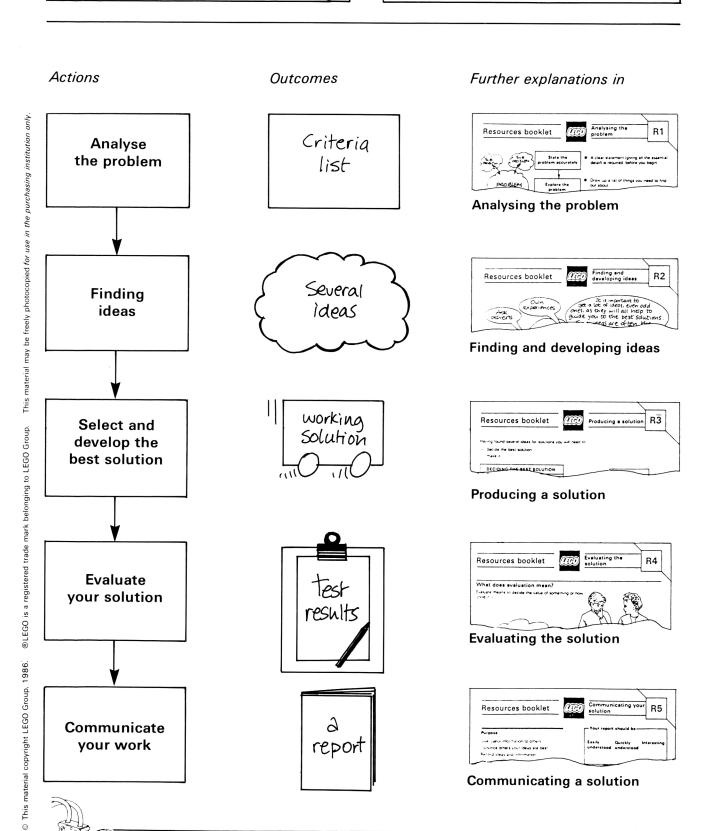
C

t

© This material copyright LEGO Group, 1986. ®LEGO is a

use in the purchasing institution only

be freely photocopied for


may

A7

-You will need -

Resources booklet Your results from Assignment 6.

This is a model which will help you solve a problem.

your work

a S е C t

Communicating a solution

report

A8

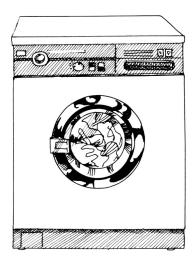
You will need -

A washing machine model 1090 C Computer system and LEGO Lines

Resources booklet R1-R5, R10-R14

You are going to -

Use the problem-solving process to produce a structured program in order to control a washing machine.


Problem solving

A program is required which turns the motor and the indicator light of a washing machine on when the door is closed and the switch is on.

The washing machine should turn off when the door is opened.

Resources available

The Assignments you have already completed Resources booklet

Further problems

Turn the washing machine on if the door is closed and the switch is on. First execute a wash cycle (and light) and then spin (and light).

Add an emergency switch facility which shuts the machine off.

a

S

C

mark belonging to LEGO Group.

A9a

You will need-

1090 LEGO Set Computer system and LEGO Lines disk Resources booklet Assignments you have completed You are going to-

Use the problem-solving process.

Sliding Door

A supermarket requires a sliding door system which will allow customers to pass in and out with ease but which remains shut at other times to save heat and energy.

As a development team for HyperDoor (Electronic Doors) plc your job is to prepare a report and demonstrate a solution to this problem.

a

S

e

This material may be freely photocopied for use in the purchasing institution only

Assignment: 9b

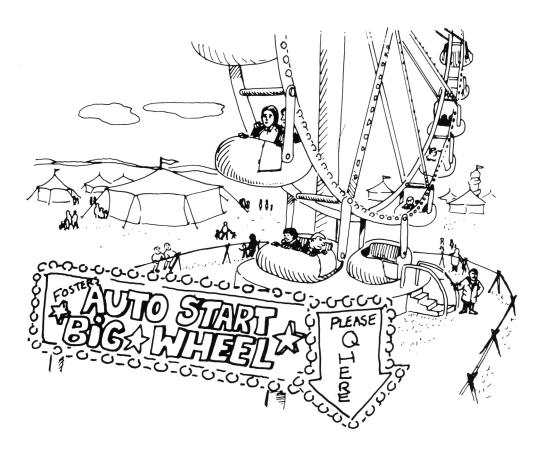
Designing a programmed system

A9b

You will need-

1090 LEGO Set
Computer system and LEGO Lines
disk
Resources booklet
Ideas booklet
Assignments you have completed

You are going to-


Use the problem-solving process.

Automatic Ferris wheel

A fairground equipment manufacturer has provided your design team with a contract to develop an automatic system for controlling a Ferris wheel ride.

The ride should be safer, more economic and more appealing than the present manual system.

You are required to provide a report and demonstration of a model of your best solution.

a

i

S

е

C

t

This material may be freely photocopied for use in the purchasing institution only

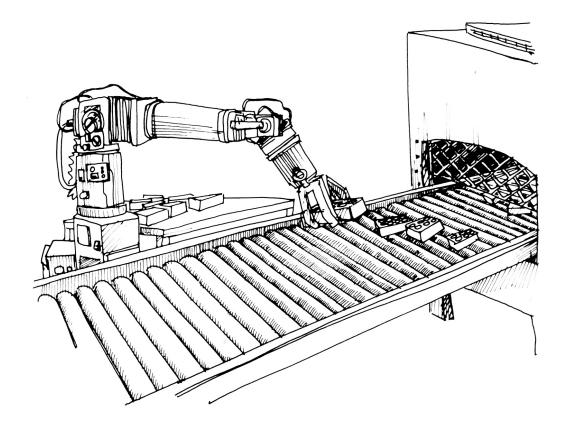
- You will need –

1090 LEGO Set

Computer system and LEGO Lines disk

Resources booklet

Assignments you have completed


You are going to-

Use the problem-solving process.

Robot Arm

A manufacturer requires a device which will pick LEGO bricks up from a conveyor belt and place them on a platform situated 10 cms from the conveyor.

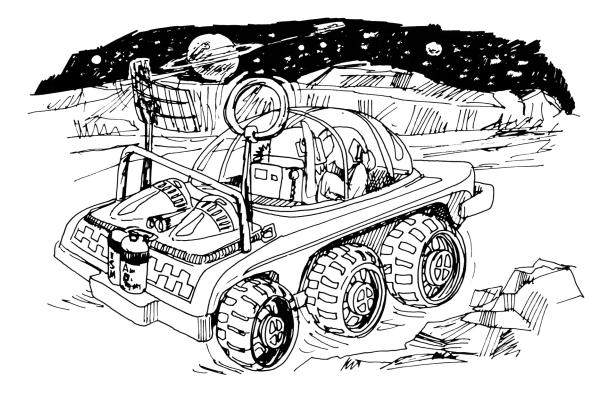
Your team must provide a report and a model of this device.

may be freely photocopied for use in the purchasing institution only

Designing a programmed system

A9d

You will need -


1090 LEGO Set
Computer system and LEGO Lines
disk
Resources booklet
Assignments you have completed

- You are going to-

Use the problem-solving process.

Space vehicle

Your development team must prepare a report and build a model of a mobile space vehicle. It should be capable of avoiding obstacles in its path.

a

Ī

S

e

C

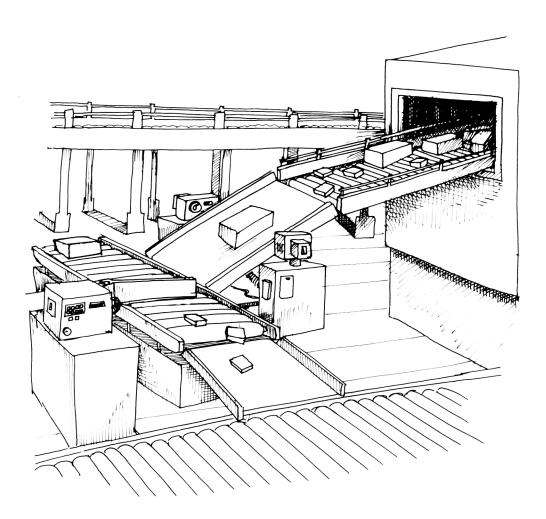
t

This material may be freely photocopied for use in the purchasing institution only

You will need-

1090 LEGO Set
Computer system and LEGO Lines
disk
Resources booklet
Assignments you have completed

You are going to-


Use the problem-solving process.

Conveyor system

A manufacturer wishes to install a computerised conveyor system in the factory.

The system must be capable of sorting out large boxes on the conveyor from smaller ones.

Your team should build a model of the most appropriate solution, and submit a report on your work to the management.

a

i

S

e

C

t

This material may be freely photocopied for use in the purchasing institution only

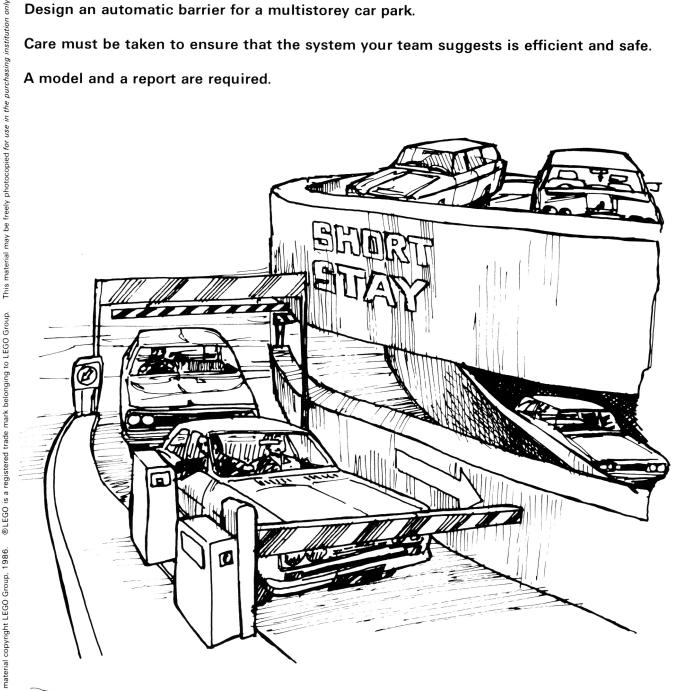
A9f

You will need -

1090 LEGO Set Computer system and LEGO Lines disk Resources booklet

Assignments you have completed

You are going to-


Use the problem-solving process.

Car Park Barrier

Design an automatic barrier for a multistorey car park.

Care must be taken to ensure that the system your team suggests is efficient and safe.

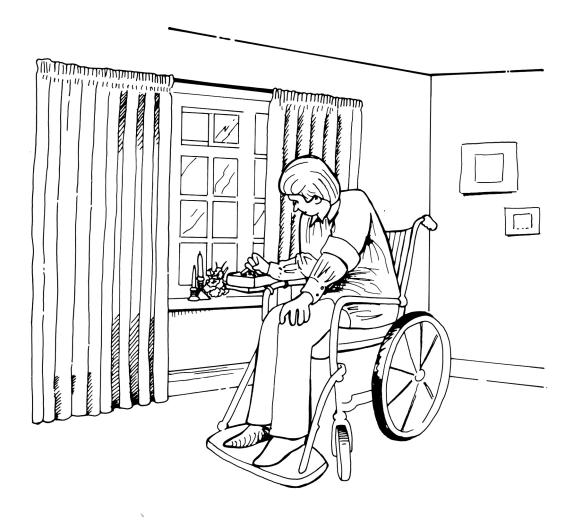
A model and a report are required.

®LEGO is a registered trade mark belonging to LEGO Group. © This material copyright LEGO Group, 1986.

Designing a programmed system

A9g

You will need -


1090 LEGO Set Computer system and LEGO Lines disk Resources booklet Assignments you have completed You are going to-

Use the problem-solving process.

Automatic Curtains

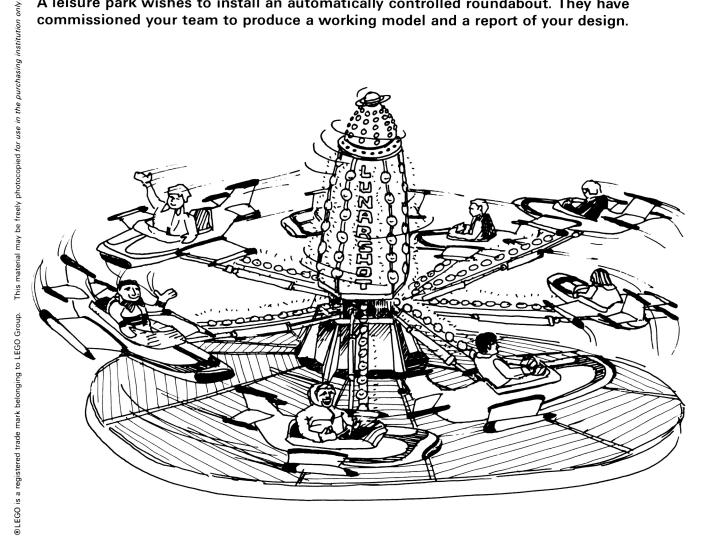
Your team has been commissioned to design a set of curtains which open and close automatically. These would be particularly useful to elderly or disabled people.

Prepare a report of your work and a model of your solution.

a

You will need-

1090 LEGO Set Computer system and LEGO Lines Resources booklet


Assignments you have completed

You are going to-

Use the problem-solving process.

Roundabout

A leisure park wishes to install an automatically controlled roundabout. They have commissioned your team to produce a working model and a report of your design.

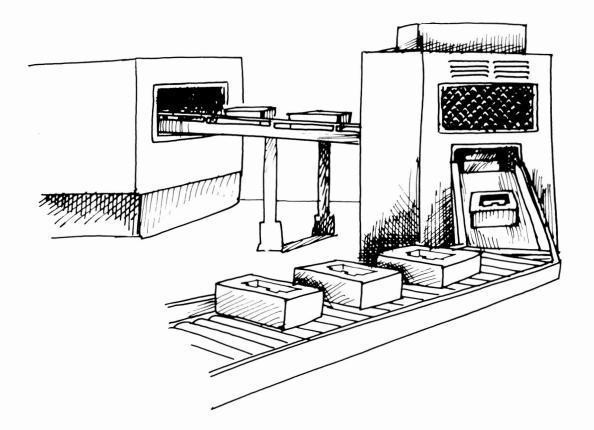
a

S

A9i

- You will need-

1090 LEGO Set Computer system and LEGO Lines disk Resources booklet Assignments you have completed Plasticine block


You are going to-

Use the problem-solving process.

Pressing machine

Your team should design a device which will automatically stamp the pattern of a LEGO brick onto a block of plasticine when it is placed onto a platform.

A report and a working model are required.

a

S

This material may be freely photocopied for use in the purchasing institution only

A9j

You will need -

1090 LEGO Set

Computer system and LEGO Lines

Resources booklet

Assignments you have completed

You are going to-

Use the problem-solving process.

Stage Effect

Your team has been commissioned to design a head to be mounted on a wall as part of a fantasy play. The head is required to 'come alive' each time one of the cast passes a certain spot.

Prepare a report of your ideas and a working model.

a

S

e

C

© This material copyright LEGO Group, 1986: ®LEGO is a registered trade mark belonging to LEGO Group.

